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Abstract. The wave equation for light propagation in slowly moving media, which is analogous to that of
quantum effects of the Aharonov-Bohm type, is characterized by the interaction momentum Q, related to
the flow u. In effects of the Aharonov-Bohm type the interaction momentum Q is related to the momentum
of the electromagnetic (em) fields, that characterizes an em flow u. It is shown that in both cases Q has
the same physical origin. Calculation of the interaction em momentum Q for the light wave dragged by the
flow yields exactly the Fresnel-Fizeau momentum. These results corroborate the validity of the magnetic
model for light and highlight the role and relevance of the em momentum in new effects of classical and
quantum physics. A tentative test of an astrophysical Fizeau-Aharonov-Bohm effect is discussed.

PACS. 03.30.+p Special relativity – 03.65.Ta Foundations of quantum mechanics; measurement theory –
42.15.-i Geometrical optics

1 Introduction

Wave propagation in moving media has attracted the at-
tention of several physicists in recent years. The anal-
ogy between the wave equation for light in moving media
and that for charged matter waves has been pointed out
by Hannay [1] and later addressed by Cook, Fearn, and
Milonni [2] who have suggested that light propagation at
a fluid vortex is analogous to the Aharonov-Bohm (AB)
effect, where charged matter waves (electrons) encircle a
localized magnetic flux [3]. Generally, in quantum effects
of the AB type [3–8] matter waves undergo an electro-
magnetic (em) interaction as if they were propagating in
a flow of em origin that acts as a moving medium [6] and
modifies the wave velocity. However, quantum effects are
not restricted to em interaction: e.g., in the one considered
by Colella, Overhauser, and Werner [9], the interaction is
not em but gravitational.

Several interesting connections between the optics of
moving media and other fields of physics involving wave
propagation have been pointed out. A magnetic model of
light propagation in moving media and its relativistic the-
ory, has been elaborated by Leonhardt and Piwnicki [10].
We recall that, according to Fresnel [11], light waves prop-
agating in a transparent, incompressible moving medium
with uniform refraction index n, are dragged by the
medium and develop an interference structure that de-
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pends on the velocity u of the fluid. The speed achieved is

v =
c

n
+

(
1 − 1

n2

)
u (1)

as later corroborated by Fizeau [12].
In effects of the AB type [3–8] and in the propaga-

tion of light in moving media there is em interaction be-
tween waves and medium. However, the magnetic model
of waves is not restricted to light propagation and has
been extended to water waves by Berry et al. [13] who
report both the theory and an experiment related to it.
Acoustical analogues have been described and observed in
moving classical media [14] and should be visible in su-
perfluids [15]. Besides the connection between the Fizeau
effect and the AB effect in a real material medium, it
has been shown that a non-uniformly moving medium ap-
pears to light as an effective gravitational field for which
the curvature scalar is nonzero [10,16]. Other applications
that involve the magnetic model of light describe slow-
light pulses in moving media [17] while an analogue of the
Fizeau effect for massive and massless particles in an ef-
fective optical medium has been derived from the static,
spherically symmetric gravitational field [18].

The magnetic model of light is based on the exist-
ing formal analogy between the non-relativistic expres-
sion of the wave equation for light in moving media and
the Schrödinger equation for charged matter waves in the
presence of the external vector potential A, i.e. the mag-
netic AB effect. In both cases the waves interact with the
external medium so that the wave equations described in
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Section 2 contain a term that is generically referred to
as the interaction momentum Q. The wave function Ψ
for light is a component of the classical em field, while
for matter waves Ψ stands for the usual quantum wave
function. Furthermore, the interaction momentum for the
light wave is related to the flow u, while the AB inter-
action term eA/c is proportional to the vector potential
A, and a priori the physical link between the two terms
is not clear. Thus, the existing analogy between the two
wave equations can either be a formal similitude, devoid of
a deeper physical meaning, or else a physically meaningful
analogy that involves an interaction of the same physical
nature.

One of the purposes of this article is to show that the
em interactions involved do indeed possess the same phys-
ical origin that is a common feature in the two equations.
The discussion is set within a wider context that includes
not only the traditional AB effect but all effects of the
AB type. Furthermore, we show in Sections 3 and 4 that,
in analogy with matter waves of effects of the AB type,
the interaction momentum Q for light in moving media
is related to the linear momentum of the em fields Pe.
The momentum Q is linked to the variation of the em
momentum Pe of the light ray due to the flow u. Finally,
in Section 5 the momentum Q is related to the polar-
ization of the medium and is calculated as the net vari-
ation of the interaction polarization em momentum due
the flow u, i.e., the dragged interaction em momentum,
a task that some physicist has considered unattainable.
The value of Q calculated for light waves yields exactly
the Fresnel-Fizeau momentum foreseen by special relativ-
ity. This result corroborates and generalizes the magnetic
model of light, validates and clarifies its physical origin
and provides further support to the several applications
mentioned above which are based on it. In closing, the
possibility of testing a Fizeau-Aharonov-Bohm effect for
photons at an astrophysical scale is discussed in a quali-
tative and tentative way in Section 6.

As discussed and elaborated in the conclusions, the
em momentum provides a common link for the classical
and quantum effects [5–8] mentioned above and assumes a
predominant, unitary role in determining the interaction
Hamiltonians in classical and quantum physics. In fact, we
allege that these new physical results have been achieved
thanks to the approach based on the em momentum.

2 Wave equations for matter and light waves

The magnetic model for light in moving media is based on
the formal analogy of the wave equation for light with the
wave equation for matter (Schrödinger equation) [1,2,10].
However, although matter and light waves share the same
wave equation they do not share the same Hamiltonian. In
fact, as shown below, the Hamiltonian for material parti-
cles (usually, electrons) with rest mass mo is the Hamilto-
nian HAB of effects of the AB type, while the Hamiltonian
for light rays (photons) is H = �ω where for light rays or
photons we have mo = 0. Although electrons and photons
do not necessarily exhibit the same behavior, the fact that

the corresponding waves share the same wave equation im-
plies a close analogy for the behavior of matter and light
waves, as discussed in the following sections.

2.1 Matter waves

In quantum effects of the AB type [3–8], a beam of in-
terfering particles possessing em properties interacts with
external em fields and potentials in a force-free (or field-
free) region of space. These effects are nonlocal in the sense
that there are no external forces acting locally on the par-
ticles so that an important characteristic is that, despite
the em interaction, the particle momentum p = mv and
energy E = (1/2)mv2 is conserved.

In seeking an analogy between the equations for mat-
ter waves and light waves, we conveniently write the
Schrödinger equation for quantum effects of the AB
type as (

−i∇− Q
�

)2

Ψ =
p2

�2
Ψ, (2)

where p2 = 2mE. Its solution is given by the matter wave
function

Ψ = eiφΨ0 = ei 1
�

∫
Q·dx Ψ0

= ei 1
�

∫
Q·dx ei 1

�
(p·x−Et) A (3)

where Ψ0 solves the Schrödinger equation with Q = 0 [19].
Although the phase φ can be removed by a phase transfor-
mation, the phase shift, or phase shift variation, is an ob-
servable quantity that is phase (or gauge) invariant [8,20].

2.2 Light waves

The basic arguments that lead to the formulation of the
magnetic model for light in moving media are the follow-
ing. Let us consider the wave equation for light in a moving
medium, which is the Lorentz transformation of the wave
equation [∇′2 − (n2/c2)∂2

t′ ]Ψ = 0 written in the comoving
frame K ′ of the medium. The Lorentz transformations
for the coordinates, frequencies and wave vectors between
the laboratory frame K and the frame K ′ = Ko comoving
with the flow are

to = γ
(
t − u · x

c2

)

xo = x +
γ − 1
u2/c2

(u · x)
c

u
c
− γu t

ωo = γ (ω − u · k)

ko = k +
γ − 1
u2/c2

(k · x)
c

u
c
− γ

ω

c2
u (4)

but here, and in the following equations, we use an ap-
proximation in the lowest order in u/c. According to (4)
the directions of the light ray in K and Ko are related by

e =
k
k

=
ko + ωou/c2

(k2
o + 2ωou · e/c2)1/2

= eo − e
(u · e)

nc
+

u
nc

. (5)
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The wave equation reads as follows in the laboratory frame(
∇2 − 2

n2 − 1
c2

u · ∇ ∂t − n2

c2
∂2

t + O(u2)
)

Ψ = 0. (6)

Its validity is not restricted to a constant uniform flow u.
In fact, the wave equation (6) is valid for a nondisper-
sive dielectric medium where both n and u vary in space
and time, provided that they do not change significantly
over the spatial scale of an optical wave length and over
one optical cycle, respectively [10]. The mentioned wave
equation can be derived, using special relativity, from the
wave equation in the comoving frame of the medium con-
ceiving it to be composed of small cells or drops. Each
cell should be small enough such that n and the velocity
profile u of the medium does not vary significantly, and
each cell should be large compared to the wavelength of
light. However, since in the present context we are dealing
with effects of the AB type, where Q(x) does not depend
on time, for our purposes it would be sufficient to assume
here that the nonuniform flow u(x) is time independent.

In units of � = 1, we seek for a solution of the type
of (3), i.e.,

Ψ = eiφΨ0 = ei
∫
(k·dx−ω dt)A (7)

where k0 = k′ and k are wave vectors, ω′ = ωo = koc/n
and ω the angular frequencies, and n the index of refrac-
tion, while Ψ0 solves equation (6) with u = 0. We sub-
stitute the ansatz corresponding to the last term of equa-
tion (7) into the wave equation (6), neglect the variation
of the amplitude A, and obtain the dispersion relation [10]

k2 − n2

c2

(
ω − n2 − 1

n2
u · k

)2

= 0. (8)

The Hamiltonian of light rays H is equal to the fre-
quency ω,

H = ω =
c

n
k +

(
1 − 1

n2

)
u · k. (9)

and the Hamilton’s equations are

dx
dt

=
∂H

∂k
,

dk
dt

= −∂H

∂x
. (10)

The first of Hamilton’s equations (10) provides the ray
velocity v = dx/dt that must coincide in the first order
with the relativistic expression [21]

v =
v′ + u + (γ − 1)u(u · v′ + u2)/u2

γ(1 + u · v′/c2)

� v′ + u − v′u · v′

c2
(11)

=
c
n

+ u − u · e
n2

e

where c/n = (c/n) eo while

γv = γuγv′

(
1 +

u · v′

c2

)
,

and γ = γu = (1 − u2/c2)−1/2. (12)

Thus, the Hamiltonian (9) leads to the light velocity

v =
∂H

∂k
=

c

n
e +

(
1 − 1

n2

)
u =

c
n

+ u − u · e
n2

e (13)

in agreement with (11).

2.3 The Fresnel-Fizeau momentum and the wave
equation for light

In agreement with special relativity, the velocity (13) is
the vector version of the original Fresnel-Fizeau speed v
of equation (1), where v is valid only for propagation in the
direction of the flow. Thus, let us introduce the Fresnel-
Fizeau momentum proportional to the velocity variation
(∆v)c = v − c/n

Qc =
n2

c2
ω

[
u− u · e

n2
e
]

=
n2

c2
ω(∆v)c. (14)

For the velocity variation ∆v = v − (c/n)e the corre-
sponding Fresnel-Fizeau momentum reads

Q =
ω

c2
(n2 − 1)u =

n2

c2
ω∆v. (15)

The difference between Qc and Q disappears in the scalar
products Qc · k = Q · k.

Since w2 = ω2, replacing w with the rhs of equa-
tion (49) and kΨ with −i∇Ψ the resulting dispersion re-
lation translates [10] into the wave equation for light in
slowly moving media

[
−i∇ +

ω

c2
(n2 − 1)u

]2

Ψ = (−i∇ + Q)2Ψ = n2 ω2

c2
Ψ,

(16)
which is analogous to the Schrödinger equation of a
charged matter wave in a magnetic field [22]. Either Qc or
Q can be indifferently used to form the canonical momen-
tum in the wave equation (16). Actually, the same wave
equation (6) can be derived without reference to special
relativity by taking into account the polarization of the
moving medium [23].

Equations (2) and (16) are analogous wave equations.
In equation (2) the momentum p is that of a material par-
ticle, while, if p is taken to be the momentum �k of light
(in units of � = 1), equation (2) becomes equation (16), Q
being the corresponding appropriate interaction momen-
tum for each case.

In the Fizeau experiment the observed fringes in the
interference pattern for light in moving water was propor-
tional to the phase variations related to the Fresnel-Fizeau
term (14) or (15). In order to evidence this phase varia-
tion and for a closer analogy with the wave equation of
the AB effects, save for the sign of Q, we may write the
solution Ψ of the wave equation (6) in a form analogous
to solution (3), i.e., with phase

Φ = φ +
∫

(ko · dx − ωo dt)

= −
∫

Q · dx +
∫

(ko · dx − ωo dt). (17)
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For light propagating in the direction of the flow, the ob-
servable phase variation, corroborated by the Fizeau ex-
periment and corresponding to the variation ∆u = u of
the flow, is

|∆Φ| =
∫

Q · dx =
∫

ω

c2
(n2 − 1)u dx. (18)

The above arguments support the idea of a magnetic
model of light propagation in slowly moving media [2,10],
while the vectorial form of the Fresnel-Fizeau term Q (14)
or (15) corresponds to a velocity v in agreement with spe-
cial relativity.

3 The interaction electromagnetic
momentum for matter and light waves

In Section 2 we have pointed out that the wave equa-
tion (6) can be obtained either by means of special rela-
tivity or from the Maxwell equations for a moving fluid.
Now we wish to establish the relation between the inter-
action momentum Q and the linear momentum of the em
fields Pe. In general, with T M

ik the Maxwell stress-tensor,
the covariant description of the em momentum (Ref. [21],
Sect. 17.5) leads to the four-vector em momentum Pα

e ex-
pressed as

P i
e c = γ

∫
(cg + T M

ik βi)d3σ

cP 0
e = γ

∫
(uem − v · g)d3σ (19)

where β = v/c, and the em energy and momentum are
evaluated in a special frame K(0) moving with velocity v
with respect to the laboratory frame. Different expressions
for the momentum density g have been used in the litera-
ture (Ref. [21], Sect. 6-9), such as g ∝ E × B, g ∝ D × B,
and g ∝ E× H.

3.1 The em momentum in the effects of the AB type

Although with Q = (e/c)A equation (2) describes the
magnetic Aharonov-Bohm effect, the same equation can
be used to describe many other quantum effects denoted
generically as effects of the AB type. In fact, all the effects
of the AB type discussed in the literature [3–8] can be
described by equation (2), provided that the interaction
momentum Q is related [6,7] to Pe, the momentum of the
em fields.

In the mentioned effects of the AB type, Q has been
expressed as [3–7]

Q = ±Pe = ± 1
4πc

∫
(E× B)d3x′

or ± 1
4πc

∫
(D × B)d3x′ (20)

where E is the electric field, D = E + 4πPpol the elec-
tric displacement, Ppol the electric polarization and B the
magnetic field.

If Q is thought of as describing a moving fluid or a flow
u, the particles or matter waves propagate through this
moving em fluid. In the terminology of fluid dynamics,
the interaction momentum Q(x) is proportional to the
flow u(x) arising from the em interaction and the quantity
∇× Q ∝ ∇× u represents its vorticity [6].

The AB term Q = (e/c)A is obtained by taking E
in equation (20) to be the electric field of the charge
and B to be the magnetic field of the solenoid. A gen-
eral proof that this result holds in the natural Coulomb
gauge, is given by Boyer [24], Zhu and Henneberger [25],
and Spavieri [26]. Actually, the observable quantity is not
the phase but the phase shift or the phase shift variation
∆Φ [20]. What is physically meaningful is the variation
of Pe related to ∆Φ, as in equation (18) for the Fizeau
experiment. For example, to test the AB effect with a
solenoid, a tapering iron whisker was used [27] so that its
magnetic flux varies along its length. The AB relative shift
∆φAB was observable by comparing the relative position
of the sets of fringes displaced, or tilted, by the varying
magnetic flux of different segments of the whisker. Thus,
∆φAB refers to fringe displacements arising for example
from comparing the interference pattern corresponding to
Q(u) = Pe = (e/c)A with the interference pattern corre-
sponding to Q(u = 0) = Poe = (e/c)A = 0.

We consider it convenient to recall how in the other ef-
fects of the AB type Q is related to Pe by (20). The idea
is to emphasize that the magnetic model of light propaga-
tion in moving media is not linked exclusively to the AB
effect.

In the case of the AC effect [4], for particles pos-
sessing a magnetic dipole moment m and moving in
the presence of a field E, we have Q = m × E/c =
−Pe = −(4πc)−1

∫
(E× B)d3x′ [28]. For an electric dipole

d in a magnetic field B, as in the He-McKellar, Wilkens,
Tkachuk [5], and Spavieri [5,6] effects, equation (20) yields
Q = (d · ∇)A/c = Pe = (4πc)−1

∫
(E× B)d3x′.

For particles possessing a magnetic dipole moment m
and interacting with the field D of a distribution of elec-
tric dipoles as in the quantum effect for a magnetic dipole
described in reference [7], considerations on Maxwell’s du-
ality lead to an interaction term which is dual of that of
the electric dipole and to the momentum of the em field
as given by the last term of equation (20). In this case,
the interaction momentum reads Q = −c−1(m · ∇)Ad =
Pe = (4πc)−1

∫
(D × B)d3x′, where Ad is the vector po-

tential due to the electric dipole distribution, dual of the
usual vector potential A of a magnetic dipole distribution.

In conclusion, the wave equation (2) with the term Q
of equation (20), describes in a unitary way all the effects
of the AB type, regardless of the type of particles and em
source distribution.

The Pe of the effects of the AB type coincides with the
em momentum Pe =

∫
g d3x of equation (19) with the em

energy and momentum evaluated in the laboratory frame
(v = 0). Actually, Pe is calculated for static configuration,
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i.e., when also the particle velocity is v = 0. Therefore,
in these effects there is em momentum (and em flow u)
even when the particle is at rest [28]. In the analogy with
fluid dynamics mentioned above, it is this interaction em
momentum that determines and represents the em flow u
where the matter waves of effects of the AB type propa-
gate.

3.2 The em momentum for light
in slowly moving media

So far, we have shown that the wave equation (16) for light
propagating in a moving medium is formally identical to
equation (2) of the effects of the AB type. To corroborate
the physical equivalence of the two wave equations we have
to relate the Fresnel-Fizeau term Q to the variation of the
em momentum Pe of the light ray calculated using the
general expression (19).

In the case of a light wave in a moving fluid, the flow
u is created by external mechanical agents (forces or pres-
sure) that make the fluid move in the pipe or container
where it flows. An interaction momentum and an em flow
arises only when both the fluid moves with velocity u and
the effective fields of the wave propagating in the fluid in-
teract with the mechanical flow to produce interaction em
fields such as the polarization Ppol = 4π−1(n2 − 1)E. The
momentum Q vanishes if there is no light wave or if the
mechanical flow vanishes (u = 0).

In the Fizeau experiment a light wave with momentum
k0, frequency ω0 and speed ω0/k0, originally in a medium
at rest, propagates into a moving medium. In the case of
refraction, for the propagation of light at a plane boundary
between two media that possess different optical proper-
ties, the propagation vector or momentum k0 is modified
to k. In the previous section the interaction momentum
Q(u) has been related to the velocity variation of light ∆v
due to the flow. According to Panofsky and Phillips [23],
this velocity variation is linked to the polarization current
that corresponds to the motion of dipoles that are affected
by the velocity of the medium. The resulting wave that de-
pends on u combines with the original light wave, which
acquires the overall phase velocity v.

Thus, as done in the next Sections, we have to re-
late explicitly Q(u) with the variation of the em momen-
tum Pe due to the flow and with the polarization of the
medium.

4 The em momentum of light
in a moving medium

The energy density of em waves propagating in a dielectric
medium is [21] uem = (1/8π)(εE2

o + B2
o) = (ε/4π)E2

o and
that of the energy flow is S = gc2 = (c/4π)Eo×B∗

o =
(c/4π)

√
εE2

o eo, while the speed of the energy flow is
v = |S|/uem = c/

√
ε = c/n.

The standard classical-quantum correspondence
(� = 1)

∫
uem d3x′ =

1
4π

∫
ε (E2

o) d3x′ → n2ω0

c−1

∫
g d3x′ =

c−1

4π

√
ε eo

∫
(E2

o) d3x′ → k0 (21)

holds for the energy ε ωo and the momentum ko.

4.1 The momentum Q, the em momentum Pe

and the mass of the em fields

To describe the em momentum of light in our moving
medium we use the following momentum density and
Maxwell tensor (Ref. [21], Sect. 6-9)

g =
1

4πc
(E× H)

Tαβ =
1
4π

(EαDα + HαBα − 1
2
(E ·D + B ·H)δαβ (22)

where, in our case, we have H = B.
There are different possibilities for the choice of the

special frame K(0) and different choices of the frame K(0)

lead to different 4-vectors (Ref. [21], Sect. 17.5). A possible
choice for K(0) consists of defining the em energy and
momentum in the inertial frame K ′ = Ko comoving with
the fluid

Eoe =
1

8πc

∫
[Do ·Eo + Bo ·Ho]d3x′ = n2ωo

Poe =
1

4πc

∫
Eo×Hod

3x′ = ko (23)

to obtain from (22) and (19)

Pe = γ
1

4πc

∫ [
E× H +

(u
c
·E

)
D +

(u
c
· H

)
B

−1
2
(E · D + B ·H)

u
c

]
d3x′ (24)

The correspondence Poe = ko of equations (21) and (23)
holds only in the rest frame of the fluid since in general
Pe �= k.

Let us now derive, in first order in u/c, the link between
Pe and Poe using the relations (23) and (24). Expressing
the fields E and B in terms of Eo and Bo and D and H
in terms of Do and Ho [29]

E× H =
(
Eo − u

c
× Bo

)
×

(
Ho +

u
c
× Do

)
(25)

= Eo×Ho + (Eo·Do + Bo · Ho)
u
c

−
(u

c
·Do

)
Eo −

(u
c
·Ho

)
Bo

(E · D + B ·H)
u
c
� (Do ·Eo + Bo ·Ho)

u
c
. (26)
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Substituting (25) and (26) into (24)

Pe =
1

4πc

∫ {
[Eo×Ho + (Do · Eo + Bo · Ho)

u
c

−
(u

c
·Eo

)
Do −

(u
c
· Ho

)
Bo (27)

+
(u

c
·Eo

)
Do +

(u
c
· Ho

)
Bo

−1
2
(Do · Eo + Bo · Ho)

u
c

}
d3x′

=
1

4πc

∫
(Eo×Ho)d3x′

+
1

4πc

∫ [
1
2
(Do ·Eo + Bo ·Ho)

u
c

]
d3x′

= Poe +
ω

c2
n2u.

We should recover result (27) even with a different choice
of the special of frame K(0). The natural choice for K(0) is
the rest frame in which the momentum

∫
(g)d3σ vanishes,

i.e., the frame comoving with the light ray. In this frame,
the em rest energy is

mec
2 =

1
8π

∫
[E(0) ·D(0)

+ B(0) · H(0)]d3σ

=
n2

4π

∫
(E(0))2d3σ. (28)

as if the em mass me of the fields were nonvanishing. In
the frame comoving with the medium the em energy is

γc/nmec
2 = n2ωo,

and me = n2 ωo

γc/nc2
= n(n2 − 1)1/2 ωo

c2
. (29)

The em momentum in the laboratory frame and in the
frame comoving with the fluid read respectively

Pe = γv mev =
γv

γc/n
n2 ωo

c2
v

Poe = γc/nme
c
n

= n2 ωo

c2

c
n

. (30)

With the help of γv = γuγc/n(1 + u · c/nc) from (12) we
obtain

Pe − Poe =
ω

c2
n2u (31)

in agreement with (27). We see from (27) or (31) that the
variation Pe − Poe provides only the leading term of the
Fresnel-Fizeau momentum.

4.2 Links of Q with Pe and the em mass

From (30) and (12) we find the relationship

Qc = Pe −
γvφ

γc/n
Poe =

ω

c2
n2

[
u − (u · e)e

n2

]
=

ωn2

c2
(∆v)c.

(32)

The corresponding relation for Q is

Q = Pe− γv

γc/n
Poee =

ωn2

c2

(
1 − 1

n2

)
u =

ωn2

c2
∆v. (33)

The interpretation of expressions (32) and (33) in terms of
nonconservation of simultaneity and the variation of the
index of refraction is given elsewhere.

A simple interpretation of the interaction momentum
Q (or Qc) arises by introducing the mass of the em fields
m = γvme in the laboratory frame. With this mass equa-
tions (32) and (33) yield

Qc = mv − m
c
n

= m(∆v)c (34)

and
Q = mv − m

c

n
e = m∆v. (35)

Equations (32), (33), (34) and (35) link the Fresnel-Fizeau
term Q (or Qc) to variations of the em momentum (19).
However, these links of the Fresnel-Fizeau term with the
em momentum Pe do not express Q as a net variation of
Pe. The fact is that Pe is the total em momentum, i.e.:
momentum carried by light waves + interaction momen-
tum associated with the flowing medium. The em fields
of light polarize the medium while the motion of the re-
sulting dipoles are affected by the velocity of the medium
producing the interaction momentum Q. In fact, accord-
ing to the considerations at the end of Section 3, Q is
an interaction momentum that is linked to the interaction
of the em waves with the flowing medium only, i.e., the
interaction em momentum due to polarization associated
with the flow. This relation with the polarization will be
established rigorously in Section 5 by taking into account
the variation of the refractive index.

5 The Fresnel-Fizeau momentum
and the interaction em momentum

One of the approaches to Q (described elsewhere) consists
of varying the index of refraction. This approach offers
a new insight in the interpretation of the Fresnel-Fizeau
momentum and hints to look for Q in terms of the net
variation of the refractive index. We pursue this approach
considering the general case of a flow with relativistic ve-
locity.

A completely relativistic theory of light propagation
in moving nondispersive media has been outlined in refer-
ence [10] and is briefly recalled here for convenience of the
reader. We assume that the refractive index n and the flow
u vary gradually over one optical wave length and one op-
tical cycle, respectively. Otherwise, the medium velocity
u is arbitrary.

In a frame (K ′ ≡ Ko) comoving with the medium the
em field-strength tensor Foµυ obeys the wave equation

(
∇2

o −
n2

c2

∂2

∂t2o

)
Foµυ = 0. (36)
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Introducing the four-vector field of the medium flow

uυ = γ
(
1,

u
c

)
, uµ = γ

(
1,−u

c

)
(37)

and transforming (36) to the laboratory frame we arrive
at [10]

[∂α∂α + (n2 − 1)(uα∂α)2]Fµυ = 0. (38)

With the ansatz

S =
∫

(k · dx − ωdt) = −
∫

kνdxν (39)

Leonhardt and Piwnicki obtain the dispersion relation

ω2 − c2k2 + (n2 − 1)γ2(ω − u · k)2 = 0. (40)

Solving equation (40) for ω = H yields a Hamiltonian that
may be expressed as

H = k h(ζ), ζ = u · e. (41)

The remarkable structure of H of equation (41) is that
it implies a velocity vector independent of the wave num-
ber k.

The rest frame dispersion relation n2ω2
o−c2k2

o = 0, cor-
responding to the wave equation (36) with the ansatz (39)
written in Ko, is

ω2
o − c2k2

o + (n2 − 1)ω2
o = 0. (42)

Relation (40) reduces to (42) with the Lorentz scalar

ω2
o − c2k2

o = ω2 − c2k2 and ωo = γ(ω − u · k) (43)

With the last equation of (43) we write (40) as

ω2 − c2k2 + (n2 − 1)ω2
o = 0. (44)

The term (n2−1)ω2
o in (42) and (44) represents the varia-

tion of the dispersion relations due to the change of refrac-
tive index from n = 1 to n. We associate to this variation
the em energy Eoi and em mass mi

Eoi = γc/nmic
2 = (n2 − 1)ωo, mi =

(n2 − 1)
n2

me,

(45)
which vanish when n → 1. In the special frame K(0)

the em energy is E
(0)
i = mic

2. In the comoving frame
of the medium, Eoi = Eoe(n) − Eoe(n = 1) represents
the energy due to polarization acquired by the system,
which arises from the interaction of the em wave with the
medium. It is part of the total energy Eoe = n2ωo, being
Eoe(n = 1) = ωo the energy of the em wave in the ab-
sence of medium. Since the polarization of the medium is
proportional to (n2 − 1), we denote Eoi in (45) as the in-
teraction polarization energy. The speed of the interaction
energy flow is v = |c2Poi|/Eoi = c/n.

The invariant em energy-momentum relation is

E2
i − c2Pi ·Pi = m2

i c
4. (46)

From (45) we obtain the interaction polarization em mo-
menta

Pi = γvmiv = (n2 − 1)
γv

γc/n

ωo

c2
v,

Poi = γc/nmi
c
n

= (n2 − 1)
ωo

c2

c
n

. (47)

With γv = γc/nγ(1 + u · eo/cn) from (12) equation (47)
yields

Pi(u) − Poi =
(
n2 − 1

) ωo

c2

(
γv

γc/n
v − c

n

)

= (n2 − 1)
ωo

c2

[
γ(1 + u · eo/cn)v − c

n

]
(48)

� ω

c2
(n2 − 1)u.

The term at the rhs of equation (48) represents the exact
relativistic variation Pi(u)−Poi of the interaction polar-
ization em momentum. The last term of equation (48), the
variation Pi(u) − Poi in first order in u/c, is the Fresnel-
Fizeau momentum Q as given by equation (15).

Thus, the Fresnel-Fizeau momentum Q is given by the
variation of the interaction polarization em momentum
Pi due the flow u, i.e., is the dragged interaction em mo-
mentum. This interpretation in terms of the drag of the
interaction polarization momentum agrees with the one
given by Panofsky and Phillips [23] mentioned at the end
of Section 4.

5.1 A Lorentz-type equation of motion
for the em momentum

After having derived the Fresnel-Fizeau momentum Q as
the variation of the interaction polarization em momen-
tum, we seek for a Lorentz-type equation of motion for the
em momentum. To this end Leonhardt and Piwnicki [10]
consider a reparametrization of the ray trajectory in terms
of a rescaled vector w ≡ kv that yields

w ≡ kv =
c

n
k + k

(
1 − 1

n2

)
u =

c

n
(k + Q). (49)

In order to interpret the meaning of this rescaled vector,
we introduce here the rescaled momentum

n

c
w ≡ n

c
kv = k +

c

n
k

(
1 − 1

n2

)
u = k + Q, (50)

which will be interpreted in terms of the em momen-
tum. For the rescaled momentum k(n/c)v, the relation
du/dt = (v · ∇)u and Hamilton’s equations (10) lead to
the Lorentz-type equation of motion

d

dt

(n

c
w

)
=

d

dt

(nv

c
k
)

= (∇× Q)×v, (51)

where Q → A plays the role of a magnetic vector poten-
tial.
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To interpret the rescaled quantity wn/c appearing in
equations (50) and (51) we notice that, among the differ-
ent possibilities for the choice of the special frame K(0)

(Ref. [21], Sect. 17.5), a possible choice for K(0) consists
of defining the em energy and momentum in the inertial
frame K of the laboratory. Indeed, with Pek = ke equa-
tion (51) becomes

d

dt

(n

c
w

)
=

d

dt

(nv

c
Pek

)
= (∇× Q)×v, (52)

implying that the rescaled quantity wn/c ≡ kvn/c corre-
sponds to the rescaled em momentum Pekv/(c/n). Thus,
equation (52) represents a Lorentz-type equation of mo-
tion involving the em momentum.

In closing, the momenta Q for the effects of the AB
type (14) and Q for light in moving media, have the same
physical origin since both are related to the interaction
em momentum (19), validating the arguments that lead to
the formulation of the magnetic model of light for moving
media.

6 Fizeau-Aharonov-Bohm effects
in astrophysics

The AB type effects involve particles such as electrons,
magnetic and electric dipoles [6,7], ionized atoms or
molecules [8], etc. Given the analogy implied by the mag-
netic model of light, in a way the Fizeau experiment is a
kind of AB effect for light particles, or photons. However,
in the Fizeau experiment the flow u (that takes on the
role of the vector potential A) is uniform, while in the AB
effect A, or Q, is not uniform and we have

Q =
e

c
A = |L|∇θ =

L

r
θ̂, (53)

where, in cylindrical coordinates r2 = x2 + y2and L =
r × Q represents the constant em angular momentum [6].

We wish to discuss here in a very qualitative and tenta-
tive way the possibility of realizing an experiment of the
Fizeau-AB type for photons. In order for a Fizeau type
experiment to reproduce the conditions of the AB effect,
the flow u must possess the same dependence on r and
θ given by (53), so that ∇ × Q = 0 in equation (52). A
fluid vortex with these characteristics may probably be re-
produced in a laboratory. However, seeking for a physical
environment where condition (53) is naturally fulfilled, we
consider here rotating cosmic objects at the astrophysical
scale, such as rotating galaxies, binary stars, rotating neu-
tron stars, pulsars, etc. During the formation of a rotating
cosmic object, some matter δm (dust, gas, radiation, in-
terstellar matter, etc.) may be ejected from the object or
trapped by the gravitational force [30]. This matter may
be rotating in the periphery of the object with tangen-
tial speed u, forming a flow u(r) with an average index of
refraction n.

The velocity distribution u(r) must be consistent with
the conservation of the mechanical angular momentum. If

I is the moment of inertia and θ̇ the angular velocity,

I θ̇ = δm r2 u

r
= δm r u = const. (54)

Thus, equation (54) implies that the flow u(r) ∝ θ̂/r pos-
sesses physical characteristics analogous to that of the em
flow Q (53) of effects of the AB type.

However, the dependence u = u(r) implied by equa-
tion (54) is generally altered by the effect of gravitation
of nearby objects, dark matter, etc. Moreover, angular
momentum is not always constant: gas steadily radiates
away energy so that angular momentum must somehow
be reduced, from the high values associated with dis-
tended hydrogen clouds moving in differential rotation
about the Galactic center, to the low values observed in
stars [31]. Nevertheless, even for cosmic objects with com-
plex structure such as galaxies, the complicated depen-
dence u = u(r) possesses regions of ∆r where the 1/r
dependence implied by equation (54) is satisfied [32].

Let us consider a distant source S, such as a bright
star, and an observer O, eventually located on the Earth.
Let the rotating cosmic object be placed somewhere be-
tween S and O, with its axis of rotation perpendicular to
SO. If the dimensions of the rotating cosmic object are
small with respect to the distance SO, the rotating cos-
mic object with its flow u(r) can be described as a very
small rotating disk. Photons or light waves corresponding
to rays coming from the source S, passing through the pe-
riphery of this rotating cosmic object will be phase-shifted
in complete analogy with electron matter waves of the AB
effect. In principle it should be possible to create interfer-
ence patterns using beams of light passing near the centre
of the rotating cosmic object and through the flow u(r)
at the periphery. Most likely, some of these beams need
to be reflected by a distant mirror in order to be made to
converge to the location of the observer O.

The quantity measured, the phase shift ∆φ (∆φ =
2πL, [6]), is related to L and, being

∇× Q = L
δ(r)
r

(55)

it follows from (55) and (15) that the vorticity of the flow
of the rotating cosmic object is

∇× u =
c2

ω(n2 − 1)
L

δ(r)
r

=
c2

ω(n2 − 1)
∆φ

2π
L̂

δ(r)
r

. (56)

Thus, physical quantities such as the vortex strength∮
(∇× u) · dS of the flow of the cosmic object, which is

linked to the index of refraction by equation (15) and rep-
resents a gauge of the vorticity of the flow of the rotating
cosmic object, can be measured and is given by

∮
(∇× u) · dS = 2π

c2

ω(n2 − 1)
L =

c2

ω(n2 − 1)
∆φ. (57)

In most cases, the cosmic object will be composed of a
hard opaque core of radius R and, at its periphery for
r ≥ R, it will be surrounded by the flow u(r). The speed
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of the flow generally coincides with that of the core at
r = R, i.e., u(r = R) = u0 = tangential speed of the core.
In this case, we have

∮
(∇× u) · dS =

∮
u · dx = 2πRu0. (58)

Generally, the quantities R and u0 can be measured inde-
pendently through astrophysical observations. Thus, from
equations (58) and (57) we derive a rough, tentative the-
oretical expression for the phase shift associated to this
rotating cosmic object

∆φ = 2πRu0
ω(n2 − 1)

c2
. (59)

Even for a rotating cosmic object made of dark matter
the phase shift (59) should be observable and its detection
may be used to reveal the existence of such a dark matter.
If the dependence u = u(r) does not satisfy equation (54)
but is known, the discrepancy with prediction (59) may be
calculated theoretically so that the result of observation
may still be useful to determine rotational parameters or
physical properties of cosmic objects.

Our suggestion is tentative and qualitative because we
are unable to discuss in detail in this paper technical as-
pects of the interferometry necessary for the observation
of this effect. We simply point out that the AB phase shift
∆φ is a phase invariant quantity [20] and thus, as such,
should be observable (see also the discussion on phase in-
variance of Ref. [8]). Considering the established analogy
between matter waves and light waves, we may conclude
that also the phase shift ∆φ for light of equation (59) is
an observable quantity. Although the details about tech-
nical aspects of the interferometry for the observation of
an astrophysical Fizeau-Aharonov-Bohm effect are left to
a future paper, rotating cosmic objects suitable for this
effect are out there, ready and waiting for potential obser-
vations.

7 Conclusions

The recent magnetic model of light propagation in mov-
ing media [2,10] is supported by the equivalence of equa-
tions (2) and (16) for matter and light waves. In our
approach we adhere to the standard interpretation of the
effects of the AB type and assume that there is a physical
analogy between the propagation of matter waves in an
em flow Q and the propagation of light waves in a flow
u. In both equations the em flow corresponds to an in-
teraction momentum Q that modifies the original wave
equation and influences the phase of the wave function Ψ .

In the effects of the AB type, regardless of the dis-
tribution of the em sources and of the type of particles
involved, the interaction momentum Q is related to the
momentum of the interaction em fields Pe (19) while the
observable quantity, the phase shift, is related to the vari-
ations of Pe. Calculation of the interaction momentum
Q for the a light wave propagating in a slowly moving

medium leads to the Fresnel-Fizeau term, which is related
to the em momentum (19) and is linked to the variation
of the light ray em momentum Pe due to the flow. Finally,
in equation (48) Q is derived as the net variation of the
interaction em momentum Pi of polarization due the flow
u, i.e., the dragged interaction em momentum.

Hence, the interaction momenta of the effects of the
AB type and of light in moving media have the same
physical origin. When, by virtue of the classical-quantum
correspondence the Fresnel-Fizeau em momentum Q is
substituted for the corresponding momentum in the mat-
ter wave equation (2), it yields the equation (16) for light
waves, confirming the assumed physical equivalence or cor-
respondence between the two wave equations.

This result corroborates the magnetic model of light
propagation in moving media and lends support to its sev-
eral connections and applications to other fields of physics.
Moreover, it contributes to point out the important role
played by the em momentum, a role that has been only sel-
dom and occasionally recognized or emphasized by physi-
cists. Thus, for decades it has been not obvious that in
effects of the AB type the interaction momentum Q had
to do, or better, coincided with the interaction em momen-
tum. However, the approach based on the em momentum
in dealing with the classical and quantum wave equations
has led to the derivation of the Fresnel-Fizeau momen-
tum, to a corroboration of the magnetic model of light, to
a unitary vision of the em interaction in all these effects [6]
and to the discovery of new quantum effects [5–8], some
of which were considered physically impossible [8].

In effects of the AB type the Lagrangian (and cor-
responding quantum Hamiltonian) of a particle possess-
ing em properties and moving with velocity v contains
an interaction energy of the type v · Q which can be con-
structed in general by substituting for ±Q the interac-
tion em momentum [7,33]. Obviously, particles with dif-
ferent em properties, such as electrons, em dipoles and
photons, possess different physical behaviors. Neverthe-
less, even the Hamiltonian (9) for light rays can be con-
structed by simply adding the em momentum interaction
term v ·Q = (c/n) · (n2−1)ωu/c2 = k · u(1−n−2) to the
standard term (c/n)k. Thus, beyond any specific result,
it should be apparent already that the presence of the em
momentum in the interaction terms of the Hamiltonians of
all these effects represents a unifying aspect that is more
than a mere coincidence.

The mentioned achievements have been possible only
after establishing the link of Q with the em momentum,
and thus we believe that they show a scenario where the
relevance the em momentum in classical and quantum
physics is reaffirmed and highlighted. In closing, in Sec-
tion 6 we mention, as an example, an effect of the Fizeau-
Aharonov-Bohm type and tentatively discuss a test of this
effect for light rays passing by and encircling a rotating
cosmic object, whose periphery is characterized by a flow
u analogous to the vector potential A of the standard AB
effect.
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Mèrida, Venezuela.

References

1. J.H. Hannay, Cambridge University Hamilton prize essay
(unpublished, 1976)

2. R.J. Cook, H. Fearn, P.W. Milonni, Am. J. Phys. 63, 705
(1995)

3. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)
4. Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984)
5. G. Spavieri, Phys. Rev. Lett. 81, 1533 (1998); G. Spavieri,

Phys. Rev. A 59, 3194 (1999); G. Spavieri, Phys. Lett. A
310, 13 (2003); X.G. He, B. H.J. McKellar, Phys. Rev.
A 47, 3424 (1993); M. Wilkens, Phys. Rev. A 49, 570
(1994); M. Wilkens, Phys. Rev. Lett. 72, 5 (1994); J. Yi,
G.S. Jeon, M.Y. Choi, Phys. Rev. B 52, 7838 (1995); C.R.
Hagen, Phys. Rev. Lett. 77, 1656 (1996); J. Anandan,
Phys. Rev. Lett. 48, 1660 (1982); J. Anandan, Phys. Lett.
A 138, 347 (1989); J. Anandan, Phys. Rev. Lett. 85, 1354
(2000); H. Wei, R. Han, X. Wei, Phys. Rev. Lett. 75, 2071
(1995); M. Peshkin, H.J. Lipkin, Phys. Rev. Lett. 74, 2847
(1995); J.P. Dowling, C.P. Williams, J.D. Franson, Phys.
Rev. Lett. 83, 2486 (1999); V.M. Tkachuk, Phys. Rev. A
62, 052112-1 (2000)

6. G. Spavieri, Phys. Rev. Lett. 82, 3932 (1999)
7. G. Spavieri, Phys. Lett. A 310, 13 (2003)
8. G. Spavieri, Eur. Phys. J. D 37, 327 (2006)
9. R. Colella, A.W. Overhauser, S.A. Werner, Phys. Rev.

Lett. 34, 1472 (1974)
10. U. Leonhardt, P. Piwnicki, Phys. Rev. A 60, 4301

(1999); U. Leonhardt, P. Piwnicki, Phys. Rev. Lett. 84,
822 (2000)

11. A.J. Fresnel, C.R. Acad. Sci. (Paris) 33, 349 (1851)
12. H. Fizeau, C.R. Acad. Sci. (Paris) 33, 349 (1851)
13. M.V. Berry, R.G. Chambers, M.D. Large, C. Upstill, J.C.

Walmsley, Eur. J. Phys. 1, 154 (1980)
14. P. Roux, J. de Rosny, M. Tanter, M. Fink, Phys. Rev. Lett.

79, 3170 (1997)
15. H. Davidowitz, V. Steinberg, Europhys. Lett. 38, 297

(1997)
16. U. Leonhardt, Phys. Rev. A, 62, 012111 (2000)

17. J. Fiurasek, U. Leonhardt, R. Parentani, Phys. Rev. A,
65, 011802(R) (2001)

18. K.K. Nandi, Yuan-Zhong Zhang, P.M. Alsing, J.C. Evans,
A. Bhadra, Phys. Rev. D 67, 025002 (2003).

19. G. Baym, Lectures on Quantum Mechanics
(Benjamin/Cummings, 1969), Sect. 3, p. 74

20. M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984); see also
B. Simon, Phys. Rev. Lett. 51, 2167 (1983); W. Dittrich,
M. Reuter, Classical and Quantum Dynamics, 2nd edn.
(Springer-Verlag, New York, 1994), Chap. 28

21. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley
& Sons, New York, 1975), Sects. 7 and 11

22. L.D. Landau, E.M. Lifshitz, Quantum Mechanics
(Pergamon, Oxford, 1977)

23. W.K.H. Panofsky, M. Phillips, Classical Electricity and
Magnetism, 2nd edn. (Addison-Wesley, Reading, 1962),
Sect. 11-5

24. T.H. Boyer, Phys. Rev. D 8, 1667 (1973)
25. X. Zhu, W.C. Henneberger, J. Phys. A 23, 3983 (1990);

these authors did not know the previous proof by Boyer
26. G. Spavieri et al., Hadr. J. 18, 509 (1995)
27. R.G. Chambers, Phys. Rev. Lett. 5, 3 (1960); see also A.

Tomonura et al., Phys. Rev. Lett. 56, 792 (1986), and
therein cited references

28. A justification of the minus sign (Q = −Pe) in the AC
effect, related to the so-called hidden momentum, is given
in: Y. Aharonov, P. Pearle, L. Vaidman, Phys. Rev. A 37,
4052 (1988); see also, G. Spavieri, Nuovo Cim. B 109, 45
(1994)

29. W.G.V. Rosser, An Introduction to the Theory of
Relativity (Butterworths, London, 1964), Sect. 8.5

30. R. Bowers, T. Deeming, Astrophysics (Jones and Bartlett,
Boston, 1984), Chap. 18, Vol. II

31. M. Harwit, Astrophysical Concepts, 2nd edn. (Springer-
Verlag, 1988), Sect. 9:7

32. K.R. Lang, Astrophysical Formulae, (Springer-Verlag,
1980), Sect. 5.3.4; see also R.J. Hamilton, F.K. Lamb, M.C.
Miller, Astrophys. J. Suppl. 90, 837 (1994)

33. Curiosly, in the AC effect the interaction energy v · Q =
c−1v · m × E , when m represents the magnetic moment of
the electron, coincides with the spin-orbit interaction term
of atomic physics, i.e. the spin orbit term is given by the
interaction energy associated with the em momentum Q


